ArbTS - Arboricultural Technician Services (Tree Consultancy Services) Stephen Lucocq BSc (Hons), Tech Cert (ArborA), M.Arbor.A Professional Member of the Arboricultural Association Web site: www.ArbTS.co.uk Email: info@ArbTS.co.uk Phone: (01639) 731 139 Mobile: 07789 551 591 # **Arboricultural Report** Including: Tree Survey Data & Tree Constraints Plan (TCP) To the British Standard 5837:2012 (Trees in relation to design, demolition and construction. Recommendations) Date – 17th October 2018 Site – Land Adjacent to A48, Pyle, Bridgend Project Reference - ArbTS 556.1 Pyle # **Table of Contents** | 1.0 | Introductio | n | 3 | |-----|---------------|------------------------------------|---| | 2.0 | The Tree Su | urvey | 3 | | 3.0 | The Trees | | 4 | | 4.0 | Tree Const | raints Plan Information | 4 | | 5.0 | Tree Protec | ction Information | 5 | | 6.0 | Conclusion | | 5 | | 7.0 | Qualification | ons & Further Information | 6 | | 8.0 | Bibliograph | ny & Web Information | 7 | | 9.0 | Appendix | | | | | 1A | Tree Survey Data | | | | 1B | Detailed Tree Survey Data Summary | | | | 2 | Tree Constraints Plan | | | | 3 | Tree Survey Key | | | | 4 | An Introduction to Tree Protection | | | | 5 | Tree Photographs | | #### Copyright © 2018 ArbTS, 2 Tan Y Graig, Caerlan, Abercraf, SA9 1TA. All rights reserved. No part of this report may be copied or reproduced by any means without prior written permission from ArbTS. If you have received this report in error, please destroy all copies in your possession or control. This report has been prepared for the exclusive use of the commissioning party and unless otherwise agreed in writing by ArbTS, no other party may use, make use of or rely on the contents of this report. No liability is accepted by ArbTS for any use of this report, other than for the purposes for which it was originally prepared and provided. Opinions and information provided in the report are on the basis of ArbTS using due skill, care and diligence in the preparation of the same and no warranty is provided as to their accuracy. Surveys are undertaken on the understanding that nothing in the final report will be omitted, amended or misrepresented by the client or any other interested party. This report and its contents remain the property of ArbTS until payment has been made in full. It should be noted and it is expressly stated that no independent verification of any of the documents or information supplied to ArbTS has been made. #### 1.0 Introduction - 1.1 The purpose of this report is to give an overview assessment as to the quality and constraints of the trees and hedgerows at Land Adjacent to A48, Pyle, Bridgend. The findings of this survey will be used to inform future design proposals, to preserve and minimise damage to the important trees and hedgerows on or adjacent to this site. - 1.2 This report identifies the quality of the trees on or adjacent to this site as categorised by the *British Standard 5837:2012, Trees in relation to design, demolition and construction Recommendations*. The survey and findings as reported here represent an unbiased third party opinion offering professional advice as to the value of the trees on this site. A Tree Constraints Plan (TCP) has been drawn, as found in Appendix 2, to illustrate the constraints identified trees pose to the design of future development. - 1.3 Arboricultural constraints within the surveyed site relate primarily to the preservation of trees recommended for retention. Identified trees must be protected during the construction phase through the employment of a combination of protective barriers, ground protection zones and tree safe construction methods, designed by a suitably qualified Arboriculturist. - 1.4 The trees' root systems and the associated soil structure is often over looked during the construction process, and can be damaged or altered by compaction, causing major damage to the health of the tree. Generally, the entire root system of the tree is within the top 600mm of soil where it can be easily damaged. A calculated area of ground around the tree should be protected for the duration of the onsite construction phase. In this report it is referred to as the Root Protection Area (RPA). - 1.5 No Arboricultural Impact Assessment, Tree Protection Plan or Tree Protection Method Statement are included within this report. No assessment has been made regarding the suitability of the proposed development design within this report. ### 2.0 The Tree Survey - 2.1 The tree survey was conducted by Stephen Lucocq *BSc (Hons), Tech Cert (ArborA) , M.Arbor.A* on 15th October 2018. - 2.2 All observations were made from the ground with the aid of an acoustic sounding hammer. No invasive decay detective instruments were used. - 2.3 The survey was carried out in accordance to *British Standard 5837:2012, Trees in relation to design, demolition and construction Recommendations.* This standard gives a systematic, consistent and transparent evaluation method to tree surveying. - 2.4 The survey was conducted with the aid of an OS master map plan. Trees and hedgerows were plotted at +/- 2 metres accuracy. - 2.5 **Preliminary management recommendations:** The survey has identified preliminary management recommendation for the trees on or adjacent to this site. Details regarding these identified operations are given in this report (See Appendix 1 - Tree Survey Data). Where work priority is stated to be H – High due to safety reasons, these operations should be carried out as soon as practically possible. Where work priority is stated to be M/H – medium/high or higher, these operations should be undertaken before commencement of any works on site. 2.6 **Limitations of the tree survey**: This survey was carried out to provide an overview assessment of the quality and constraints of the trees on or adjacent to this site. No responsibility can be taken for resultant damage or injury occurred by a failing tree. The survey only gives a snap shot of what is visible and is not obscured on the day of the survey. The survey identifies trees of varying quality and their above ground/below ground constraints. This survey does not constitute a full detailed tree condition/tree risk assessment of the site and this report is only valid for 12 months from the date of the tree survey. #### 3.0 The Trees - 3.1 The full tree survey data can be found in Appendix 1A Tree Survey Data. - 3.2 Tree Survey Summary Table (See Appendix 3 for BS5837 category definitions). (A more detailed Tree Survey Data Summary can be found in Appendix 1B) | <i>BS5837:2012</i>
Quality
Category | Total Number
of Individual
Trees
Surveyed | Total Number
of Tree
Groups
Surveyed | Total Number
of Tree Areas
Surveyed | Total Number
of Woodland
Areas
Surveyed | Total Number
of Hedgerows
Surveyed | Total | |--|--|---|---|--|--|-------| | A
(High - Most
desirable for
retention) | 1 | 0 | 0 | 0 | 0 | 1 | | B
(Moderate -
Desirable for
retention) | 0 | 18 | 1 | 0 | 0 | 19 | | C
(Low - Optional
for retention) | 2 | 8 | 1 | 0 | 43 | 54 | | U
(Poor -
Unsuitable for
retention) | 0 | 0 | 0 | 0 | 0 | 0 | | Total
A,B,C,U | 3 | 26 | 2 | 0 | 43 | 74 | # 4.0 Tree Constraints Plan (TCP) Information 4.1 A Tree Constraints Plan (TCP) can be found at Appendix 2 of this report. An introduction to TCP can also be found at the start of Appendix 2. For further information and details regarding TCP please see the *British Standard 5837:2012, Trees in relation to design, demolition and construction – Recommendations.* #### 5.0 Tree Protection Information 5.1 No Arboricultural Impact Assessment, Tree Protection Plan or Tree Protection Method Statement are included within this report for the proposed development design. An introduction to Tree Protection can be found at Appendix 4. #### 6.0 Conclusion - 6.1 This site has potential to accommodate development whilst retaining the trees of value. The significant trees on or adjacent to this site should be given due consideration in the development design process. - 6.2 If the health and stability of the trees are maintained, and the following strategies implemented: a suitable development design; tree protection methods; Arboricultural site supervision and tree after care, the process of construction could be conducted with no adverse impact on the important trees upon or adjacent to this site. #### 7.0 Further Information & Qualifications Stephen Lucocq has been involved in Arboriculture within South Wales for nearly twenty years. He has worked as an Arborist for many of these years and has a good working knowledge of the practical side of the profession. He has always taken an active interest in all areas of Arboriculture and kept up to date with current research and developments. #### Qualifications - First Class BSc (Hons) Degree Combined Studies Biology and IT - Arboricultural Association Technicians Certificate Level 4 (Merit) - PTI Professional Tree Inspection (Lantra Awards) - 2D Computer Aided Design (City and Guilds Level 3) - Quantified Tree Risk Assessment (QTRA) Mike Ellison - Visual Tree Assessment (VTA) Mike Ellison - Arboriculture and Bats (Lantra) - Industrial Rope Access Trade Association (IRATA) - Practical Arboriculture Qualifications (NPTC) #### Membership Arboricultural Association Professional Member (M.Arbor.A) # 8.0 Web Information & Bibliography #### **Web Information** Arboricultural Association http://www.trees.org.uk/ Cellular Confinement System GeoWeb - GreenFix CellWeb - Geosynthetics Cellweb Underground Utilities Installation
http://www.njug.org.uk/ ### **Bibliography** - British Standards 3998 (2010) Recommendations for Tree Work UK; British Standards Intuition - British Standard 5837:2012, Trees in relation to design, demolition and construction - Recommendations UK; British Standards Intuition - Coombes, A.J (1992) Trees London; Dorling Kindersley - Lonsdale, D (1999) Principle of Tree Hazard Assessment and Management Edinburgh; Forestry Commission - Mattheck, C (2007) Field Guide for Visual Tree Assessment Germany; Karlsruhe Research Centre - Shigo, A.L (1991) Modern Arboriculture USA; Shigo and Trees, Association - Sterry, P (2007) Collins Complete British Trees London; Collins - Strouts, R.G (2000) Diagnosis of ill-health in trees Edinburgh; Forestry Commission - Weber,K & Mattheck, C (2003) Manual of wood decay UK; Arboricultural Association # 9.0 Appendix 1A -Tree Survey Data | Tree ID | Tree Species | Age | Stems | Stem
Diam
(mm) | Cat | Height +
(Lower
Branch
Height) | Nrth | Est | Sth | Wst | Phys
Cond | Struc
Cond | Est.
Remain
Contrib | Comr | nents | Preliminary Management Recommendations | Work
Priority | RPR
(m) | RPA
(m2) | |---------|--|-----|-------|----------------------|-----|---|------|-----|-----|-----|--------------|---------------|---------------------------|------|---|--|------------------|------------|-------------| | A1 | Fraxinus excelsior
(Ash), Quercus robur
(Common Oak), Salix caprea
(Goat Willow), Acer
pseudoplatanus (Sycamore) | EM | 1 | 200 | B2 | 7(0) | 2 | 2 | 2 | 2 | F | F | 20+ | | area of small trees and scrub
growing on motorway embankment,
western end sparse in tree cover | | | 2.4 | 18.1 | | A2 | Acer pseudoplatanus
(Sycamore), Fraxinus
excelsior (Ash), Crataegus
monogyna
(Hawthorn), Prunus spinosa
(Blackthorn) | SM | 1 | 150 | C2 | 5(0) | 2 | 2 | 2 | 2 | G/F | F | 20+ | | sparse area of small trees and scrub
growing on motorway embankment | | | 1.8 | 10.18 | | G1 | Fraxinus excelsior
(Ash),Prunus spinosa
(Blackthorn),Crataegus
monogyna
(Hawthorn),Sambucus nigra
(Elder) | EM | 1 | 300 | C2 | 8(0) | 3 | 3 | 3 | 3 | F | F | 20+ | | area of mainly blackthorn scrub with
two early mature ash trees not,
group located in small depression in
the ground | | | 3.6 | 40.72 | | G2 | Acer pseudoplatanus
(Sycamore), Prunus avium
(Wild Cherry), Acer
platanoides (Norway
Maple), Crataegus
monogyna
(Hawthorn), Cypress spp
(Cypress spp), Aesculus
hippocastanum (Horse
Chestnut) | EM | 1 | 400 | B2 | 9(0) | 3 | 3 | 3 | 3 | G/F | F | 20+ | | road side group of trees and shrub of
moderate value | | | 4.8 | 72.39 | | | Fraxinus excelsior (Ash), Crataegus monogyna (Hawthorn), Acer pseudoplatanus (Sycamore), Prunus spinosa (Blackthorn), Acer campestre (Field Maple), Salix fragilis (Crack Willow), Salix caprea (Goat Willow), Cypress spp (Cypress spp) | EM | 1 | 250 | B2 | 8(2) | 2 | 2 | 2 | 2 | G/F | F | 20+ | | group of trees and scrub growing along motorway and road, some sparse areas and sprawling scrub noted | | | 3 | 28.28 | | Tree ID | Tree Species | Age | Stems | Stem
Diam
(mm) | Cat | Height +
(Lower
Branch
Height) | Nrth | Est | Sth | Wst | Phys
Cond | Struc
Cond | Est.
Remain
Contrib | Comments | Preliminary Management Recommendations | Work
Priority | RPR
(m) | RPA
(m2) | |---------|---|-----|-------|----------------------|-----|---|------|-----|-----|-----|--------------|---------------|---------------------------|--|--|------------------|------------|-------------| | G4 | Crataegus monogyna
(Hawthorn),Corylus avellana
(Hazel),Ilex aquifolium
(Holly),Fraxinus excelsior
(Ash),Prunus spinosa
(Blackthorn) | М | 1 | 200 | C2 | 5(2) | 4 | 4 | 4 | 4 | F | F | 10+ | small section of recently unmanaged hedgerow | | | 2.4 | 18.1 | | G5 | Crataegus monogyna
(Hawthorn),Fraxinus
excelsior (Ash),Malus
(Apple) | EM | 1 | 350 | C2 | 10(0) | 5 | 5 | 5 | 5 | F | F | 10+ | elapsed managed section of hedgerow that has developed into multistemmed trees | | | 4.2 | 55.42 | | G6 | Crataegus monogyna
(Hawthorn),Salix caprea
(Goat Willow),Prunus
spinosa (Blackthorn) | EM | 1 | 150 | C2 | 4(2) | 2 | 2 | 2 | 2 | F | F | 10+ | road side group of trees and scrub
with some gaps noted | | | 1.8 | 10.18 | | G7 | Fagus sylvatica (Beech) | EM | 1 | 550 | B2 | 10(2) | 5 | 5 | 5 | 5 | G/F | G/F | 20+ | road side group of beech trees | | | 6.6 | 136.9 | | G8 | Prunus spinosa
(Blackthorn),Pinus nigra
(Austrian Pine),Crataegus
monogyna (Hawthorn),Salix
caprea (Goat Willow),Fagus
sylvatica (Beech),Acer
pseudoplatanus (Sycamore) | EM | 1 | 400 | B2 | 15(3) | 4 | 4 | 4 | 4 | F | F | 20+ | road side group of trees and scrub,
some pine with sparse needle cover
noted | thin out weak declining / dead trees | H/M | 4.8 | 72.39 | | G9 | Acer pseudoplatanus
(Sycamore),Fagus sylvatica
(Beech),Pinus nigra
(Austrian Pine),Acer
campestre (Field Maple) | EM | 1 | 450 | B2 | 14(4) | 5 | 5 | 5 | 5 | F | F | 20+ | road side group of trees and scrub,
some pine with sparse needle cover
noted | thin out weak declining / dead trees | H/M | 5.4 | 91.62 | | G10 | Acer campestre (Field
Maple),Corylus avellana
(Hazel) | EM | 1 | 200 | C2 | 4(2) | 3 | 3 | 3 | 3 | F | F | 10+ | small section of recently unmanaged hedgerow | | | 2.4 | | | G11 | various tree and scrub spp
(various tree and scrub spp) | EM | 1 | 250 | B2 | 7(0) | 3 | 3 | 3 | 3 | G/F | F | 20+ | roas side group of trees | | | 3 | 28.28 | | Tree ID | Tree Species | Age | Stems | Stem
Diam
(mm) | Cat | Height +
(Lower
Branch | Nrth | Est | Sth | Wst | Phys
Cond | Struc
Cond | Est.
Remain
Contrib | Comments | | RPR
(m) | RPA
(m2) | |---------|---|-----|-------|----------------------|-----|------------------------------|------|-----|-----|-----|--------------|---------------|---------------------------|--|--|------------|-------------| | G12 | Acer pseudoplatanus
(Sycamore) | EM | 1 | 450 | B2 | Height)
8(3) | 5 | 5 | 5 | 5 | G/F | G/F | 20+ | small row of sycan | more | 5.4 | 91.62 | | G13 | Acer pseudoplatanus
(Sycamore),Fraxinus
excelsior (Ash),Acer
campestre (Field Maple) | EM | 1 | 450 | B2 | 10(3) | 7 | 7 | 7 | 7 | F | F | 20+ | road side group of
some scrub areas | | 5.4 | 91.62 | | G14 | Acer pseudoplatanus
(Sycamore) | EM | 1 | 450 | B2 | 10(0) | 6 | 6 | 6 | 6 | F | F | 20+ | road side group of
some gaps and scr | of trees and scrub, crubby areas noted | 5.4 | 91.62 | | G15 | Acer pseudoplatanus
(Sycamore), Prunus spinosa
(Blackthorn), Sorbus aria
(Whitebeam), Crataegus
monogyna (Hawthorn) | EM | 1 | 450 | B2 | 9(0) | 6 | 6 | 6 | 6 | F | F | 20+ | low B category. road side group of some gaps and scr | of trees and scrub, crubby areas noted | 5.4 | 91.62 | | G16 | Acer pseudoplatanus
(Sycamore), Quercus robur
(Common Oak), Acer
campestre (Field Maple) | EM | 1 | 500 | B2 | 13(4) | 6 | 6 | 6 | 6 | G/F | G/F | 20+ | road side row of ti | trees | 6 | 113.1 | | G17 | various tree and scrub spp
(various tree and scrub spp) | EM | 1 | 350 | B2 | 10(0) | 3 | 3 | 3 | 3 | G/F | G/F | 20+ | Surrounding vegetation prevented close inspection of the tree therefore all observations and measurements are estimated. | ees and scrubs | 4.2 | 55.42 | | G18 | various tree and scrub spp
(various tree and scrub spp) | EM | 1 | 350 | B2 | 10(0) | 3 | 3 | 3 | 3 | G/F | G/F | 20+ | Located on private land preventing a close inspection of the tree therefore railway line, unabl all observations and measurements are estimated. | ole to survey closely | 4.2 | 55.42 | | G19 | various tree and scrub spp
(various tree and scrub spp) | EM | 1 | 250 | C2 | 6(0) | 4 | 4 | 4 | 4 | F | N/A | 10+ | unable to survey o
located in field | closely as cattle | 3 | 28.28 | | G20 | various tree and scrub spp
(various tree and scrub spp) | EM | 1 | 400 | B2 | 14(0) | 5 | 5 | 5 | 5 | F | N/A | 20+ | boundary group o
survey closely as o
field | | 4.8 | 72.39 | | Tree ID | Tree Species | Age | Stems | Stem
Diam | Cat | Height +
(Lower
Branch | Nrth | Est | Sth | Wst | Phys
Cond | Struc
Cond | Est.
Remain | Com | ments | Preliminary Management Recommendations | Work
Priority | RPR
(m) | RPA
(m2) | |---------|---|-----|-------|--------------|-----|------------------------------|------|-----|-----|-----|--------------|---------------|----------------|---|---
---|------------------|------------|-------------| | | | | | (mm) | | Height) | | | | | | | Contrib | | | | , | () | (/ | | G21 | Fagus sylvatica
(Beech),Pinus nigra
(Austrian Pine) | EM | 1 | 500 | B2 | 10(3) | 5 | 5 | 5 | 5 | G/F | G/F | 20+ | | | | | 6 | 113.1 | | G22 | Fagus sylvatica (Beech), Acer | EM | 1 | 300 | C2 | 10(4) | 4.5 | 4.5 | 4.5 | 4.5 | G/F | G/F | 20+ | | road side row of trees | | | 3.6 | 40.72 | | | campestre (Field Maple) | G23 | Acer pseudoplatanus
(Sycamore), Fraxinus
excelsior (Ash), Acer
campestre (Field
Maple), Crataegus
monogyna (Hawthorn), Salix
caprea (Goat Willow) | EM | 1 | 450 | B2 | 11(3) | 7 | 7 | 7 | 7 | F | F | 20+ | | road side group of trees and scrub,
some scrubby areas noted,
overhanging carriageway | fell declining branches / trees and reduce overextend overhanging branch over the carriage by 30 to 40 percent in branch length | н/м | 5.4 | 91.62 | | G24 | Acer pseudoplatanus
(Sycamore) | EM | 1 | 550 | B2 | 8(3) | 5 | 5 | 5 | 5 | G/F | G/F | 20+ | | end tree of small row of sycamore | | | 6.6 | 136.9 | | G25 | Cypress spp (Cypress spp) | EM | 1 | 300 | C2 | 7(0) | 3 | 3 | 3 | 3 | G/F | F | 10+ | | row of conifer spp | | | 3.6 | 40.72 | | G26 | Fagus sylvatica (Beech),Acer
pseudoplatanus (Sycamore) | М | 1 | 800 | B2 | 16(6) | 9 | 9 | 9 | 9 | F | F | 20+ | low B category. | one large beech with southern stem
removed and two smaller
suppressed sycamore trees, unable
to survey closely as cattle located in
field | | | 9.6 | 289.6 | | H1 | Native Hedgerow Spp
(Native Hedgerow Spp) | М | 1 | 100 | C2 | 1.5(0) | 1.5 | 1.5 | 1.5 | 1.5 | G/F | G/F | 20+ | | Field boundary hedgerow | | | 1.2 | 4.52 | | | Native Hedgerow Spp
(Native Hedgerow Spp) | М | 1 | 100 | C2 | 1.5(0) | | 2 | 2 | | G/F | G/F | 20+ | | Field boundary hedgerow | | | 1.2 | 4.52 | | Н3 | Native Hedgerow Spp
(Native Hedgerow Spp) | М | 1 | 100 | C2 | 2(0) | | 1.5 | | | F | F | 10+ | A hedgerow with no noticeable gaps noted. | | | | 1.2 | 4.52 | | H4 | Native Hedgerow Spp
(Native Hedgerow Spp) | М | 1 | 100 | C2 | 2(0) | | 1.5 | | | G/F | G/F | 20+ | | Field boundary hedgerow | | | 1.2 | 4.52 | | H5 | Native Hedgerow Spp
(Native Hedgerow Spp) | М | 1 | 100 | C2 | 1.5(0) | | 1.5 | | | F | F | 10+ | | Field boundary hedgerow | | | 1.2 | 4.52 | | Н6 | Native Hedgerow Spp
(Native Hedgerow Spp) | М | 1 | 200 | C2 | 5(0) | 3 | | 3 | 3 | G/F | G/F | 20+ | A hedgerow with minor gaps noted. | Field boundary hedgerow, thick and overgrown in places | | | 2.4 | 18.1 | | H7 | Native Hedgerow Spp
(Native Hedgerow Spp) | М | 1 | 100 | C2 | 2(0) | 2 | 2 | 2 | 2 | F | F | 20+ | A hedgerow with minor gaps noted. | Field boundary hedgerow | | | 1.2 | 4.52 | | Н8 | Native Hedgerow Spp
(Native Hedgerow Spp) | М | 1 | 150 | C2 | 4(0) | | 3.5 | | | F | F | 20+ | high C category. | Field boundary hedgerow | | | | 10.18 | | Н9 | Native Hedgerow Spp
(Native Hedgerow Spp) | М | 1 | 100 | C2 | 1(0) | 1 | 1 | 1 | 1 | F/P | F/P | 10+ | low C category. A hedgerow with major gaps noted. | Field boundary hedgerow | | | 1.2 | 4.52 | | H10 | Native Hedgerow Spp
(Native Hedgerow Spp) | М | 1 | 150 | C2 | 3(0) | 3 | 3 | 3 | 3 | G/F | G/F | 20+ | | Field boundary hedgerow | | | 1.8 | 10.18 | | Math Mathematical Math Mathematical Mathe | | | | | Stem | | Height + | | | | | | | Est. | | | | | | | |--|--------------|---------------------|----------|---------|------|-----|----------|------|-----|----------|-----|--------------|---------------|------|------------------------------------|-------------------------------|--|------------------|------------|-------------| | Mathematic registron (sign) | Tree ID
| Tree Species | Age | Stems | | Cat | | Nrth | Est | Sth | Wst | Phys
Cond | Struc
Cond | | Com | ments | Preliminary Management Recommendations | Work
Priority | RPR
(m) | RPA
(m2) | | Mathematical Section | H11 | Native Hedgerow Spp | М | 1 | 150 | C2 | | 2.5 | 2.5 | 2.5 | 2.5 | F | F | 10+ | | Field houndary hedgerow | | | 1.8 | 10 18 | | Branch Conference Sept | | | | _ | 130 | CZ | 2(0) | 2.5 | 2.3 | 2.5 | 2.5 | | | 10. | | licia bodinary neagerow | | | 1.0 | 10.10 | | Control (Color Ministry) Color Ministry Minis | H12 | | EM | 1 | 100 | C2 | 2.5(0) | 3 | 3 | 3 | 3 | F | F | 10+ | | sprawling area of scrub and | | | 1.2 | 4.52 | | Proceedings Procedings Proceedings Procedings Proceedings Pr | Second Color Miles | | | | | | | | | | | | | | | | trees | | | | ı | | No. | Product before Spot | | capica (coat minon) | | | | | | | | | | | | | | | | | | ı | | Product before Spot | H12 | Native Hedgerow Con | M | 1 | 150 | C2 | 1 5(0) | 2 | 2 | 2 | 2 | - | E/D | 10+ | A hadgerow with major gans noted | Field houndary hedgerow | | | 1 0 | 10.19 | | 11.0 Native Hedgerow Sport M 1 100 CZ 150 15 15 15 15 15 15 1 | 1113 | | IVI | 1 | 130 | CZ | 1.5(0) | | | | _ | ' | 1/1 | 101 | A neugerow with major gaps noteu. | i leiu boulluar y fleugerow | | | 1.0 | 10.10 | | March Performance Spr: March 1, 100 C2 200 1, 5 1, | H14 | | М | 1 | 100 | C2 | 1.5(0) | 1.5 | 1.5 | 1.5 | 1.5 | F | F | 20+ | | Field boundary hedgerow | | | 1.2 | 4.52 | | Matter Netgerow Sep | Matten M | H15 | | М | 1 | 100 | C2 | 2(0) | 1.5 | 1.5 | 1.5 | 1.5 | F | F | 20+ | | Field boundary hedgerow | | | 1.2 | 4.52 | | Native Hedgerous Spg M | H16 | | М | 1 | 100 | C2 | 2(0) | 1.5 | 1.5 | 1.5 | 1.5 | F | F | 10+ | | Field boundary hedgerow | | | 1.2 | 4.52 | | Makes Hedgerow Spg) | | | | | | | _(-, | 1 | | | | | - | | | , | | | | 1 | | High Patrice Hedgeron Spg Mark 1 10 10 12 15 15 15 15 15 15 15 | H17 | | М | 1 | 100 | C2 | 1.5(0) | 1.5 | 1.5 | 1.5 | 1.5 | F | F | 20+ | A hedgerow with minor gaps noted. | Field boundary hedgerow | | | 1.2 | 4.52 | | Native Hedgerow Spg) | | | | | | | | 1 | | L | | _ | | | | | | | | | | History Marker Hedgerow Spp Hed | H18 | | М | 1 | 100 | C2 | 1.5(0) | 1.5 | 1.5 | 1.5 | 1.5 | F | F | 20+ | | Field boundary hedgerow | | | 1.2 | 4.52 | | Native Hedgerow Spp M 1 100 C2 1,500 1,5
1,5 | H19 | | М | 1 | 100 | C2 | 2(0) | 1.5 | 1.5 | 1.5 | 1.5 | F | F | 20+ | major gaps noted. | Field boundary hedgerow | | | 1.2 | 4.52 | | Native Hedgerow Spp M | | | | | | | ` ′ | | | | | | | | | , | | | | 1 | | Native Hedgerow Spp M 1 100 C2 1.5 101 1.5 | H20 | | М | 1 | 100 | C2 | 1.5(0) | 1.5 | 1.5 | 1.5 | 1.5 | F | F | 20+ | | Field boundary hedgerow | | | 1.2 | 4.52 | | Native Hedgerow Spp N | | | L | | 400 | | 4 = (0) | | | | | _ | | | | | | | | 4.50 | | 122 State Hedgerow Spp M 1 100 C2 15(0) 1.5 | H21 | | M | 1 | 100 | C2 | 1.5(0) | 1.5 | 1.5 | 1.5 | 1.5 | F | F | 10+ | | Field boundary hedgerow | | | 1.2 | 4.52 | | Native Hedgerow Spp N 1 10 C2 10 15 15 15 15 15 15 15 | H22 | | М | 1 | 100 | C2 | 1.5(0) | 1.5 | 1.5 | 1.5 | 1.5 | F | F | 10+ | | Field boundary hedgerow | | | 1.2 | 4.52 | | Native Hedgerow Spp | | | | | | | | | | | | | | | | - | | | | | | Native Hedgerow Spp M 1 100 C2 15(0) 15 15 15 15 15 15 15 1 | H23 | | М | 1 | 100 | C2 | 1(0) | 1.5 | 1.5 | 1.5 | 1.5 | F | F | 10+ | | Field boundary hedgerow | | | 1.2 | 4.52 | | Native Hedgerow Spp M 1 100 C2 15(1) 15 15 15 F F 10+ A hedgerow with minor gaps noted. Field boundary hedgerow 1.2 4.52 | шэл | | N.4 | 1 | 100 | C | 1 5/0) | 1.5 | 1 5 | 1 5 | 1 5 | - | - | 101 | | Field houndary hodgorow | | | 1 2 | 4.52 | | Native Hedgerow Spp | п24 | | IVI | 1 | 100 | CZ | 1.5(0) | 1.5 | 1.5 | 1.5 | 1.5 | г | F | 10+ | | Field boulidary fledgerow | | | 1.2 | 4.32 | | H26 Native Hedgerow Spp (Native (Nativ | H25 | | М | 1 | 100 | C2 | 1.5(1) | 1.5 | 1.5 | 1.5 | 1.5 | F | F | 10+ | A hedgerow with minor gaps noted. | Field boundary hedgerow | | | 1.2 | 4.52 | | Native Hedgerow Spp | H27 Native Hedgerow Spp (Native Hedgerow Spp (Native Hedgerow Spp) M 1 1 100 C2 1.5(1) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 | H26 | | М | 1 | 100 | C2 | 1.5(0) | 1.5 | 1.5 | 1.5 | 1.5 | F | F | 20+ | | Field boundary hedgerow | | | 1.2 | 4.52 | | Native Hedgerow Spp | H27 | | М | 1 | 100 | C2 | 1.5(0) | 15 | 1.5 | 15 | 15 | G/F | G/F | 20+ | | Field houndary hedgerow | | | 1.2 | 4 52 | | Mative Hedgerow Spp M 1 100 C2 2(0) 1.5 | | | | _ | 100 | 02 | 1.5(0) | 1.5 | 1.5 | 1.5 | 1.5 | ٥,. | Ο,. | 20. | | licia soundary neageron | | | 2.2 | 52 | | H29 | H28 | | М | 1 | 100 | C2 | 1.5(1) | 1.5 | 1.5 | 1.5 | 1.5 | F | F | 10+ | | Field boundary hedgerow | | | 1.2 | 4.52 | | Native Hedgerow Spp M 1 150 C2 2(0) 1.5 | 1120 | | | - | 400 | 62 | 2(0) | 4.5 | 4.5 | 4.5 | 4.5 | - | _ | 40. | | | | | 4.2 | 4.53 | | H30 Native Hedgerow Spp M 1 150 C2 2(0) 1.5
1.5 | п29 | | IVI | 1 | 100 | C2 | 2(0) | 1.5 | 1.5 | 1.5 | 1.5 | r | F | 10+ | | Field boundary nedgerow | | | 1.2 | 4.52 | | H31 | H30 | | М | 1 | 150 | C2 | 2(0) | 1.5 | 1.5 | 1.5 | 1.5 | G/F | G/F | 20+ | | Field boundary hedgerow | | | 1.8 | 10.18 | | (Native Hedgerow Spp) M 1 100 C2 1.25(0) 1.5 | H32 Native Hedgerow Spp M 1 100 C2 1.25(0) 1.5 1 | H31 | | M | 1 | 150 | C2 | 4(0) | 2 | 2 | 2 | 2 | F | F | 10+ | | Field boundary hedgerow | | | 1.8 | 10.18 | | (Native Hedgerow Spp) N Native Hedgerow Spp N Native Hedgerow Spp Hed | H32 | | М | 1 | 100 | C2 | 1 25(0) | 1.5 | 1.5 | 15 | 1.5 | F | F | 10+ | + | Field houndary bedgerow | | | 1 2 | 4.52 | | H33 | 1132 | | | _ | 100 | CZ | 1.25(0) | 1.5 | 1.5 | 1.5 | 1.5 | | | 10. | | licia bodinary neagerow | | | 1.2 | 4.52 | | H34 | H33 | Native Hedgerow Spp | М | 1 | 100 | C2 | 2(0) | 1.5 | 1.5 | 1.5 | 1.5 | F | F | 10+ | A hedgerow with no noticeable gaps | Field boundary hedgerow | | | 1.2 | 4.52 | | (Native Hedgerow Spp) | | | <u> </u> | | L | | | 1 | L. | <u> </u> | | | | | noted. | | | ļ | | | | H35 Native Hedgerow Spp M 1 100 C2 1(0) 1 1 1 1 1 F F 10+ Field boundary hedgerow, over grown with brambles and ferns 1.2 4.52 (Native Hedgerow Spp) H36 Crataegus monogyna (Hawthorn), Fraxinus excelsior (Ash), Prunus spinosa (Blackthorn), Salix | H34 | | М | 1 | 100 | C2 | 1(0) | 1 | 1 | 1 | 1 | F | F | 10+ | | Field boundary hedgerow | | | 1.2 | 4.52 | | (Native Hedgerow Spp) | H35 | | М | 1 | 100 | C2 | 1(0) | 1 | 1 | 1 | 1 | F | F | 10+ | + | Field boundary hedgerow, over | | | 1.2 | 4.52 | | (Hawthorn),Fraxinus excelsior (Ash),Prunus spinosa (Blackthorn),Salix | | | | <u></u> | | | | L | | | | | | | | | | | | | | excelsior (Ash), Prunus spinosa (Blackthorn), Salix | H36 | | EM | 1 | 100 | C2 | 2.5(0) | 2 | 2 | 2 | 2 | F | F | 10+ | | | | | 1.2 | 4.52 | | spinosa (Blackthorn),Salix | | | | | | | | 1 | | | | | | | | brambles | | | l | . | ı | , | , | | Tree ID
| Tree Species | Age | Stems | Stem
Diam
(mm) | Cat | Height +
(Lower
Branch
Height) | Nrth | Est | Sth | Wst | Phys
Cond | Struc
Cond | Est.
Remain
Contrib | Com | ments | Preliminary Management Recommendations | Work
Priority | | RPA
(m2) | |--------------|--|-----|-------|----------------------|-----|---|------|-----|-----|-----|--------------|---------------|---------------------------|--------------------------------------|--|--|------------------|------|-------------| | | Native Hedgerow Spp
(Native Hedgerow Spp) | М | 1 | 150 | C2 | 4(0) | 3 | 3 | 3 | 3 | G/F | G/F | 20+ | high C category. | Field boundary hedgerow | | | 1.8 | 10.18 | | H38 | Native Hedgerow Spp
(Native Hedgerow Spp) | М | 1 | 150 | C2 | 3(0) | 3 | 3 | 3 | 3 | G/F | G/F | 20+ | A hedgerow with moderate gaps noted. | Field boundary hedgerow | | | 1.8 | 10.18 | | H39 | Native Hedgerow Spp
(Native Hedgerow Spp) | М | 1 | 150 | C2 | 3(0) | 3.5 | 3.5 | 3.5 | 3.5 | F | F | 20+ | | Field boundary hedgerow | | | 1.8 | 10.18 | | H40 | Native Hedgerow Spp
(Native Hedgerow Spp) | М | 1 | 100 | C2 | 1.25(0) | 1.5 | 1.5 | 1.5 | 1.5 | F | F | 10+ | A hedgerow with minor gaps noted. | Field boundary hedgerow | | | 1.2 | 4.52 | | | Native Hedgerow Spp
(Native Hedgerow Spp) | М | 1 | 100 | C2 | 1.25(0) | 1.5 | 1.5 | 1.5 | 1.5 | F | F | 10+ | | Field boundary hedgerow | | | 1.2 | 4.52 | | | Native Hedgerow Spp
(Native Hedgerow Spp) | М | 1 | 100 | C2 | 1.5(0) | 1.5 | 1.5 | 1.5 | 1.5 | F | F | 10+ | | Field boundary hedgerow, unable to
survey closely as cattle located in
field | | | 1.2 | 4.52 | | | Native Hedgerow Spp
(Native Hedgerow Spp) | М | 1 | 100 | C2 | 1.5(0) | 1.5 | 1.5 | 1.5 | 1.5 | F | F | 10+ | | Field boundary hedgerow | | | 1.2 | 4.52 | | | Acer pseudoplatanus
(Sycamore) | М | 1 | 1150 | A2 | 13(3) | 10 | 9 | 9 | 10 | G/F | N/A | 20+ | | unable to be inspected due to cattle
in field, appears a tree of some age
and value when in inspected from
road | | | 13.8 | 598.4 | | T2 | Malus (Apple) | М | 1 | 300 | C3 | 5(2) | 4 | 4 | 4 | 4 | F | F | 10+ | | small fruit tree of moderate interest,
animal damage to buttress noted | | | 3.6 | 40.72 | | Т3 | Pinus nigra (Austrian Pine) | EM | 1 | 350 | C2 | 14(4) | 4 | 7 | 3 | 5 | F/P | F | 10+ | Slightly sparse foliage cover. | small for species pine, two small low
quality conifers and small copper
beech noted adjacent to pine | | | 4.2 | 55.42 | # 9.0 Appendix 1B – Detailed Tree Survey Data Summary (Please see Appendix 3 - Tree Survey Key) | Field Usage Results. | | | |--|-------|-------| | Total Records: 74 | | | | | | | | | | | | | | % of | | Туре | Count | Total | | Т | 3 | 4.1 | | G | 26 | 35.1 | | А | 2 | 2.7 | | Н | 43 | 58.1 | | | | | | | | % of | | Tree Species | Count | Total | | Native Hedgerow Spp (Native Hedgerow Spp) | 41 | 55.4 | | Acer pseudoplatanus (Sycamore) | 4 | 5.4 | | Malus (Apple) | 1 | 1.4 | | Pinus nigra (Austrian Pine) | 1 | 1.4 | | Fagus sylvatica (Beech) | 1 | 1.4 | | various tree and scrub spp (various tree and scrub | | | | spp) | 5 | 6.8 | | Cypress spp (Cypress spp) | 1 | 1.4 | | | | | | | | % of | | Age | Count | Total | | SM | 1 | 1.4 | | EM | 28 | 37.8 | | M | 45 | 60.8 | | | | | | | | % of | | Cat | Count | Total | | A2 | 1 | 1.4 | | B2 | 19 | 25.7 | | C2 | 53 | 71.6 | | C3 | 1 | 1.4 | | | | | | | | % of | | Average Stem Diameter | Count | Total | | <150 | 33 | 44.6 | | <250 | 15 | 20.3 | | <500 | 20 | 27 | | <750 | 4 | 5.4 | | <1000 | 1 | 1.4 | | <2000 | 1 | 1.4 | | | | | | | | % of | |---------------------|-------|-------| | Height | Count | Total | | <5 | 44 | 59.5 | | <10 | 14 | 18.9 | | <15 | 14 | 18.9 | | <20 | 2 | 2.7 | | | | | | | | % of | | Phy Cond | Count | Total | | G/F | 23 | 31.1 | | F | 49 | 66.2 | | F/P | 2 | 2.7 | | | | | | | | % of | | Stuc Cond | Count | Total | | G/F | 17 | 23 | | F | 52 | 70.3 | | F/P | 2 | 2.7 | | N/A | 3 | 4.1 | | | | | | | | % of | | Est. Remain Contrib | Count | Total | | 10+ | 32 | 43.2 | | 20+ | 42 | 56.8 | | | | | | | | % of | | RPR | Count | Total | | <5 | 62 | 83.8 | | <10 | 11 | 14.9 | | <15 | 1 | 1.4 | | | | | | | | % of | | RPA | Count | Total | | <5 | 33 | 44.6 | | <15 | 11 | 14.9 | | <20 | 4 | 5.4 | | <30 | 3 | 4.1 | | other | 23 | 31.1 | # 9.0 Appendix 2 - Tree Constraints Plan #### An introduction to the Tree Constraints Plan (TCP) Trees which have been identified to be retained should be treated as constraints to the design of future development. A Tree Constraints Plan has been drawn and can be found over leaf. - Tree Quality The TCP
highlights the above and below ground constraint each tree poses to the design of future development schemes. Further to this the BS5837 tree quality category (A High, B Moderate, C Low and U- Unsuitable for retention) are coloured coded as solid circles at the centre of the trees' position. - Root Protection Area A magenta circle on the TCP sets out root protection area (RPA). Within this area no construction work, alteration in ground levels or site traffic (machinery or persons) should occur. This prevents damage to tree roots and soil compaction. (Where possible an Arboriculturist can design suitable tree protection methods to facilitate construction work/site traffic within these areas). - Tree Canopy The jagged green circle/oval on the TCP sets out the above ground constraints of tree canopy spread. Within this area no construction work or site traffic (machinery or persons) should occur if the tree is to be retained. This prevents damage to the tree branches and trunk. (Where possible an Arboriculturist can design suitable tree protection methods to facilitate construction work/site traffic within these areas). - Tree Shading Shade from the retained trees should be considered in the development design. The shade cast, depending on the trees height and width, will be from a North West to East pattern through the main part of the day. - Tree Future growth Within future development design, consideration should also be given to the ultimate height and extent of the canopy spread of all trees within the site identified to be retained. oup/Area/Woodland/Hedgerow Tree ID# (G-Tree Group, A-Tree Area, W-Woodland, H- Hedgerow) Tree Species (Common Tree Name Shown) ## 9.0 Appendix 3 - Tree Survey Data Key - Tree ID # Identifies the location of individual trees (T-ID Number), Groups of trees (G-ID Number), Area of trees (A-ID Number), Hedgerow (H-ID Number), Woodland (W-ID Number), Row of trees (R-ID Number) and tree Stumps (S-ID Number) on the accompanying plan. (Please note: A group of trees here refers to two or more standing trees that form a visual whole, whereas an area of trees refers to dispersed individual trees standing within the site) - **Tree Species** Scientific names and common tree name in brackets are generally shown. - Age - o (Y) Young Less than 1/3 of life completed - o (SM) Middle Aged 1/3 2/3 of life completed - o (EM) Early Mature Just entering Maturity - o (M) Mature more than 2/3 of life completed - o (OM) Over Mature more than 3/3 of life completed and declining - (V) Veteran (v) Veteran Veteran trees have no precise definition but are trees considered to be of biological aesthetic or ecological value because of their age - Stems Number of tree stems used to calculate the RPR/RPA - Stem Diam (mm) Diameter of tree stem measured in millimetres for single stem trees or average stem diameter calculated for multi-stemmed trees as detailed in section 4.6 & Annex C of the British Standard 5837:2012, Trees in relation to design, demolition and construction Recommendations. The height above ground level where the stem measurement was taken will be shown if not measured at 1.5 metres above ground level. (Please note: that the stem diameter of certain trees will have to be estimated due to difficulties in taking measurements or for trees with a large number of stems) - Cat Tree Quality Category British Standard 5837:2012 A, B, C, U + 1, 2, 3 Based on BS5837:2012 categories A, B, C, U provides the basis of prioritising trees for retention: - o A Those of high quality with an estimated remaining life expectancy of at least 40 years. (*Most desirable for retention*) - o B Those of moderate quality with an estimated remaining life expectancy of at least 20 years. (*Desirable for retention*) - o C Those of low quality with an estimated remaining life expectancy of at least 10 years, or young trees with a stem diameter below 150mm. (*Optional for retention*) - o U Those in such a condition that they cannot realistically be retained as living trees in the context of the current land use for longer than 10 years. (*Unsuitable for retention unless provides high conservation value*) Retention Criteria Subcategories: Used for identifying subcategories E.g. A2 = A high quality tree with high landscape qualities (further details can be found in British Standard 5837:2012, Trees in relation to design, demolition and construction - Recommendations UK; British Standards Intuition) - o 1 Mainly Arboricultural qualities - o 2 Mainly landscape qualities - o 3 Mainly cultural values, including conservation - Height + (Lower Branch Height) Tree height in metres and in brackets height in metres of the crown (tree branches) clearance at its lowest point above adjacent ground levels. - Nrth, Est, Sth, Wst Crown Spread (Metres) -Tree branch spread in metres measured in four directions (North, East, South, West) from the trunk. - Phys Cond Physiological Condition Indicating the health of the tree (rudimentary assessment carried out only) - o (G) Good - o (F) Fair - o (P) Poor - o (D) Dead - o (N/A) Not Applicable unable to fully inspect tree due to surrounding vegetation or access issues. - **Struc Cond** Structural Condition indicting the structural integrity of the tree (rudimentary assessment carried out only) - o (G) Good No, or remediable physical defects or decay - o (F) Fair Physical non-remediable defects or decay present, not presenting imminent danger but should be monitored - o (P) Poor physical non-remediable defects or decay present, tree liable to imminent collapse or loss of major limbs. - o (D) Dead - (N/A) Not Applicable unable to fully inspect tree due to surrounding vegetation or access issues. - Est. Remain Contrib (<10, 10+, 20+, 40+) The trees estimated remaining contribution in years, recorded as: - o <10 less than 10 years - o 10+ at least 10 years - o 20+ at least 20 years - o 40+ at least 40 years - Comments Additional Comments if required - **Preliminary Management Recommendations** Work Recommendations, including further investigation of suspected defects that require more detailed assessment and pose potential for wildlife habitat. - Work Priority Work Priority This gives a work priority rating of preliminary management for each tree. - o H High Urgent work to be carried out as soon as practicable due to safety reasons (Within 14 days). - o H/M High- Medium Work to be carried out within 6 months/or before construction phase begins - o M Medium Work to be carried out in 12 months - o L Low After consideration/Re-inspect in 18-24 months - o Blank No work required. - RPR Root protection radius / RPA Root Protection Area Is a layout design tool indicating the minimum area around a tree deemed to contain sufficient roots and rooting volume to maintain the tree's viability, and where the protection of the roots and soil structure is treated as a priority. RPR is a circular area measured as a radius in metres from the centre of the tree or RPA is an area in metres squared. Where required this area may be changed in shape but not reduced in area whilst providing adequate protection of the tree's rooting system. _____ # 9.0 Appendix 4 – An Introduction to Tree Protection For the purpose of this report an introduction is given to tree protection. If required an Arboricultural Impact Assessment, Tree Protection Plan and Tree Protection Methods Statement can be provided for the finalised development design. Tree protection methods must be considered and designed by an Arboriculturist. These should then be implemented BEFORE any machinery or materials are bought onto site and before any demolition, development or stripping of soil commences. The Root Protection Area (RPA) (cyan circles/lines) indicated on the Tree Constraints Plan must be set out and the protective barriers and ground protection installed accordingly for retained trees. The protective barriers and ground protection areas shall be regarded as sacrosanct, and shall not be removed or altered without prior recommendation by an Arboriculturist and approval of the LPA. The areas protected by barrier fencing and ground protection shall be subject to the following restrictions: - Existing soil levels within the protected areas shall not be altered. - No excavation of any kind shall take place within the protected areas. - The protected areas shall not be used for storage of any kind. - No vehicles or machinery shall be allowed into the areas protected by fencing. - Should the developer require the above restrictions to be breached for unforeseen reasons, an appropriate method of works must be agreed with the Local Planning Authority prior to any works taking place within the protected areas. Additional precautions outside protected barrier areas and ground protection: - All underground services should be installed following NJUG Volume 4 Guidelines for the Planning, Installation and Maintenance of Utility Apparatus in Proximity to Trees. The full document is available at http://www.njug.org.uk/. - Building materials and fuels such as oil, bitumen or cement should not be stacked or discharged within 10 metres of the trees stem. - Fires will not be lit beneath any tree or in a place where flames could extend to within 10 metres of the outer canopy of any tree. - Trees that are to be retained and protected should not be used as anchorage for services or equipment. - The use of cranes and large machinery on site should be planned and care taken not to damage the tree during the process. Visits by an Arboriculturist during the construction process should be conducted to ensure all of the above are being strictly adhered too. # 9.0 Appendix 5 – Tree Photographs Tree ID#G7 Tree ID#G16 Tree ID#G15 Tree ID#G13 + G23 Tree ID#A1 Tree ID#T2 + G10 Tree ID#G4 Tree ID#G3 Tree ID#H6 Tree ID#G26 Tree ID#T3 Tree ID#T1